

A Layer 2.5 Toolkit

Mark Carson

NIST

April, 2002

http://www.antd.nist.gov/nistswitch/linux/

Outline

- Why a layer 2.5 toolkit? (Past)
- Why a new NIST Switch? (Present)
 - Architecture
 - Demonstration of "interesting" features
- What can NIST Switch enable? (Future)
 - Optimized multipath in "fairly flat" networks

Why a layer 2.5 toolkit?

- An independent niche in the protocol stack
 - < 3, not end-to-end: no universality required</p>
 - >2, not link-layer-specific: not "hostage" to a particular technology
 - Scope (of signaling, etc.) is as broad or narrow as you wish (at least within your area of control)
- Upper, lower layers are yours to command
 - Internally: queueuing, shaping, merging, splitting
 - Externally: routing, signaling

Why a new NIST Switch?

- Linux (2.4)—based
 - Takes advantage of all the Linux hands nowadays
- Highly modular (toolkit design)
 - No kernel rebuild (~), loadable features (queueing...)
- Improved functionality
 - Much greater label selectivity (port, protocol, ToS/Exp...)
 - Better statistics tracking
- Simpler interfaces
 - Proc FS, iptables, ip/tc

Obligatory Architecture Box Diagram

RSVP-TE OSPF-TE LDP RSVP

Higher protocol layers

IP code

Netfilter steal

Label packet_type

Label classifier

Label CBQ scheduler

GigEthernet | OC12 | ATM...

API sets

Routing socket

Classifier | I

Proc fs

Label table

Event

notification

Some interesting user-level features

- Composable queueing framework
 - Currently CBQ, TBF, GRED
 - Many other potential options
 - Goals: support full-blown TE, DiffServ at edges; down to simple merge in interior
- Proc FS label access
 - "Direct" access to kernel data structures

Composable queueing framework

- Label interfaces appear as usual Linux network interfaces, layered on top of "real" interfaces
 - /dev/labeli
 - Keep statistics, etc., by usual means
- Queueing disciplines can be pushed on top of these by ordinary Linux tools
 - ip, tc

Labeled data flow and queueing

Proc FS label access

- Label table appears as directory in /proc filesystem
 - /proc/net/label
 - Label table entries are "files" within this directory
 - Name: *labelid* or *labelid.exp* (e.g., 23, 47.3)
 - Contents: formatted dump of label table data structure
- File-like appearance makes kernel data structures directly editable by ordinary tools
 - You can even vi them!

Proc FS statistics and control points

Near-term TBD list

- Validation/performance efforts
 - Calibrate queueing (on regular Linux first)
 - Profiling, tweaking
- Routing, signaling, restoration support
 - RSVP (from FreeBSD+ISI Linux) (UMBC)
 - Help move UMBC over to new platform
 - OSPF-OMP (UKansas?)
 - Event notification

Future research outlook: What can NIST Switch enable?

- Mid-term testbed proposal: Optimized multipath in fairly flat networks
 - Novel high-bandwidth, low latency routing
 - Uses label-based OMP as hook for investigating TE, restoration issues in simple form
 - Minimal hardware (fast Ethernet), software requirements, but has future applicability as well
 - Combines several recent trends, builds off UMBC work
 - Good example of the "layer 2.5" viewpoint

Optimized multipath in fairly flat networks

- Labeled OMP as TE, restoration tool
 - (Loosely) bind together multiple links into layer 2.5 channels
 - OMP handles bandwidth sharing, failure recovery
 - Sort of a RAID for networks
- Fairly flat networks
 - Network is multigraph with fairly small diameter
 (~3)
 - Testbed version: Ethernet switches with high port count (~24)

Optimized multipath

- Optimized multipath routing
 - Load-balancing scheme which allows scalable path bandwidth provisioning with (~) no fixed limits
 - Sort of a higher–level version of channel bonding
 - Sample implementation on Zebra OSPF may be available (B. Ramachandran, ITTC, U Kansas)
 - Labeled version needed

Fairly flat networks

- Flat neighborhood networks (*Dietz*, *Mattox*,
 University of Kentucky) for Beowulf
 - GA for designing maximal bandwidth one-hop networks
 - "Fairly flat" variant allows 2 or 3 hops
 - Requires new design algorithm (heuristic)

Label-based Ethernet switching

- Exploit capabilities of current Ethernet switches (UMBC)
 - Labels used to signal between layer 2.5 "Steiner points"
 - Intermediate layer 2 nodes controlled by manipulating forwarding tables
 - Used here to build up multipaths

